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1. INTRODUCTION

n Leontief models, the concepts of indecomposability
and primitivity play an important role with the former

meaning the interconnectivity among industries and the latter meaning dynamic
stability of given models. In this paper, we restate a proposition due to Frobenius,
which has not been presented in the textbooks on linear algebra. We also explain
about two applications of this proposition to population dynamics by Leslie and
to social networks. In Section 2, we define indecomposability and primitivity of
nonnegative matrices, and give our main proposition on a characterization
of primitivity in terms of indecomposability. Section 3 is devoted to Leslie model of
population dynamics, and Section 4 to the concepts of degree of connection
and fragility of social networks. The last Section 5 includes some remarks.

2. INDECOMPOSABILITY AND PRIMITIVITY

We first explain our notation. The symbol Rn means the Euclidean space of
dimension   n n R n≥( ) +2 ,  is the nonnegative orthant of Rn, and A is a given
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  n n× nonnegative matrix. Let aij be the (i, j)-element of the matrix A, and xj

the j-th entry of the vector   x R n∈ . The symbol N stands for the index set

  N n≡ { }1 2, , ..., . For vector comparison, we use the following inequality signs.

  x y≥ iff   x y for all i Ni i≥ ∈ ,

  x y> iff   x y for all i N and x yi i≥ ∈ ≠ ,

  x y>> iff   x y for all i Ni i> ∈ .

Now we define
Definition 2.1. A nonnegative matrix A is decomposable iff there exist two
nonempty subsets I and J of the index set N such that   I J∩ = φ,   I J N∪ = ,and

  
a ij = 0 for   i I and j J∈ ∈ .1

A nonnegative matrix A is indecomposable iff it is not decomposable. Equiva-
lently, however, we may define the indecomposability as
Definition 2.2. A nonnegative matrix A is indecomposable iff for any two
nonempty subsets I and J of the index set N such that   I J∩ = φ,   I J N∪ = ,
we have

Ax Ay i I
i i

( ) > ( ) ∈ in at least one 

for arbitrary two vectors x and y in   R
n
+  such that   

x y i I x yi i j j= ∈ > for  and   

for    j J∈ .
Definition 2.3. A nonnegative matrix A is primitive when there exists a positive

integer k such that   Ak >> 0 . Otherwise it is imprimitive.2

It is well known that a nonnegative matrix which is indecomposable and
has at least one positive diagonal element is primitive. This is obvious from
another well-known characterization of indecomposable imprimitive matrices
explained, e.g., in Nikaido (1963, Theorem 8.2, p. 117) or Nikaido (1970, Theo-
rem 21.1, p. 142).3 This proposition dates back to G. Frobenius.4 A direct and

1 An interesting history of terminology about ‘indecomposability’ is given in A. Brauer, “On the
Theorems of Perron and Frobenius on Nonnegative Matrices”, in Solomon G. Szego et al. (eds.), Studies
in Mathematical Analysis and Related Topics, Stanford, Stanford University Press, 1962, pp. 48-55.

2  T. Fujimoto and U. Krause, “Strong Ergodicity for Strictly Increasing Nonlinear Operators”, Linear
Algebra and Its Applications, vol. 71, 1985, pp. 101-112.

3 H. Nikaido, Convex Structures and Economic Theory, Nueva York, Academic Press, 1968; H.
Nikaido, Introduction to Sets and Mappings in Modern Economics, Nueva York, Academic Press, 1970.
(The original Japanese edition in 1960.)

4 G. Frobenius, “Über Matrizen aus nicht-negativen Elementen”, Sitzungsberichte der Kgl.
Preussischen Akademie der Wissenschaften zu Berlin, 1912, pp. 456-477.
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combinatorial proof is given in a forthcoming book by Krause, even in a nonlin-
ear setting.5 In this paper, a direct and simple proof is presented, which can be
used also in nonlinear generalizations.

Let us consider the following   2 2× matrix A

  
A ≡







0 1

1 0 .

This is indecomposable. When we make the second power of A,

  
A2 1 0

0 1
≡





 ,

which is decomposable. Thus, we need an additional condition to guarantee the
indecomposability of the power of an indecomposable matrix.

We first state a lemma.
Lemma 2.1. If A is indecomposable and has at least one positive diagonal
element, then Ak is also indecomposable for any integer k > 0.
Proof. We prove this lemma using mathematical induction. First for k = 1, the

proposition is obvious. We assume this lemma holds for  (k – 1) with   k ≥ 2 . Let
us also assume without losing generality that a11 > 0.

Suppose to the contrary that Ak be decomposable and we have two nonempty

subsets I and J of the index set N such that   I J I J N∩ = ∪ =φ, , and 
  
a ij

k( ) = 0

for   i I j J∈ ∈ and . Here, 
  
a ij

k( )  means the (i, j)-element of the matrix Ak. Among

possible bipartitions between I and J, we adopt as I the one with the minimum

number of rows. When 1 is in the index set I, we split Ak as   A Ak⋅ −1. Since

  
a a ij

k
11

10 0> =−, ( )  for   j J∈ . Now because of the supposition of mathematical

induction, there should be at least one positive entry among 
  
a ij

k( )−1  for   i I∈  and

  j J∈ , say     a h
k
l

( )− >1 0  for some     l ∈ J  when   h H I∈ ⊂ , where   H I≠  be-

cause 
  
a j

k
1

1 0( )− =  for   j J∈ . We will consider the index set (I – H) and   J H∪ .

(The index subset H is assumed to be maximal in the sense that 
  
a ij

k( )− =1 0  for

any pair (i, j) such that for   i I H∈ −( )and   j J∈ .) It is clear that aih = 0 for any

5  U. Krause, Positive Discrete Dynamical Systems: Theory, Models, and Applications (to appear
in 2004).



166 Takao Fujimoto y Fumiko Ekuni

Política y Cultura, primavera 2004, núm. 21, pp. 163-176

pair (i, h) such that for   i I∈  and   h H∈ : otherwise we would have 
  
a ij

k( ) > 0  for

that   i I∈  and some   j J∈  since   A A Ak k= ⋅ −1, thus yielding a contradiction.

Then, from another relationship that   A A Ak k= ⋅−1 , we have   a ih
k( ) = 0  for any

pair (i, h) such that for   i I H∈ −( )  and   h H∈ . This implies that we have two

nonempty subsets   I I H’ ≡ −( ) and   J J H’ ≡ ∪( )  of the index set N such that

  I j’ ’∩ = φ,   I J N’ ’∪ =  and 
  
a ij

k( ) = 0  for   i I∈ ’  and   j J∈ ’ , a contradiction to

the supposed minimality of the index set I. Hence, Ak is shown to be
indecomposable when   1 ∈ I .

When   1 ∈ J , we first split Ak as   A Ak− ⋅1 , and in the second stage as   A Ak⋅ −1,
looking for positive entries column-wise rather than row-wise. The above proof
can proceed mutatis mutandis. QED.

Now we prove our main proposition.
Proposition 2.2. A given nonnegative matrix A is primitive if and only if Ak is
indecomposable for any positive integer k.
Proof. First, let us prove the ‘only if’ part. Suppose that there is a positive
integer p such that Ap becomes decomposable. Then we can find a vector x with

at least one zero element such that for any positive integer q, 
  
A xpq ⋅  keeps zero

elements in the same positions. This is a contradiction to the fact that Ak >> 0 for
some integer k > 0, and so Ar >> 0 for any integer r > k.

Now we proceed to the ‘if’ part. Let us adopt the absolute sum norm ⋅  in

the n-dimensional Euclidean space Rn, and we consider the subset

  
S x x R xn≡ ∈ ={ }+  and 1 . All we have to show is that starting from an arbi-

trary point x on the boundary of S, bd(S), a sequence of vectors

  
X x x Ax Ax A x A x≡ { }/ , / , / , ...2 2 , comes into the interior of S, int(S).

Suppose to the contrary that this sequence remains on the boundary for ever,
starting from a certain vector x. Indecomposability by Definition 2.2 requires
that in the vector series X, there can be no two points on the same sub-simplex
facet of the boundary bd(S). Otherwise x and Akx for some integer k > 0, has the
same sign pattern, contradicting the assumed indecomposability of Ak. There
are, however, only a finite number of facets on bd(S). Hence, the vector se-
quence X has to enter the interior of S. QED.
Corollary 2.3. If a given indecomposable matrix has its trace positive, then it is
primitive.
Proof. It is obvious from Lemma 2.1 and Proposition 2.2. QED.
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3. LESLIE MODEL OF POPULATION DYNAMICS

3.1. Leslie Model

We are ready to apply our results in the previous section to Leslie’s model of
population dynamics, which is a discrete version of Lotka’s model.6 This model

consists of n age groups and it is represented by a nonnegative   n n n× ≥( )2

matrix A, which shows the survival ratios of age groups after one period, let us
say an ‘year’, and reproduction ratios (or birth rates) for some age groups. (We
assume away the differences between males and females.) More specifically, the
matrix A is written as

    

A

a

a

a

a

a a

k k

k k

n n

n k n k

≡



























−

+

−

+

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

1 2

1

1

1

1

,

,

,

,

, ,

L L

M O L M M L M

O L

L L

M M M M O M M

L L

L L

The entry   
a k k, + >1 0 means the survival ratio from the age group (k + 1) to

that of k, while if   a n k, > 0 , then this implies the age group k is reproductive.

The dynamics of population is described by the following difference equation:

  x t A x t+( ) = ⋅ ( )1  with the initial state   x R n0( ) ∈ + ,

where   x t R n( ) ∈ +  is the vector of population distribution among age groups at

period t.
We make

6  P. H. Leslie, “On the Use of Matrices in Certain Population Mathematics”, Biometrika, vol. 33,
1945, pp. 183-212; P. H. Leslie, “Some Further Notes on the Use of Matrices in Population Mathematics”,
Biometrika, vol. 35, 1948, pp. 213-245, and A. J. Lotka, Elements of Physical Biology, Baltimore, Williams
and Wilkins, 1925. (Reprinted in 1956: Elements of Mathematical Biology, New York, Dover Publications.)
See also J. H. Pollard, Mathematical Models for the Growth of Human Populations, Cambridge, Cambridge
University Press, 1973.
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Assumption 3.1. In the bottom row of A, there are at least two positive en-

tries, i.e.,   
a n k, > 0 and with     1 ≤ < ≤k nl , and   

a i i, + >1 0  for all i such that

  1 1≤ ≤ −( )i n .

We assume in addition that   
a n k, > 0  is the left-most entry in the bottom row

of A. It is clear that the matrix A above is decomposable if 1 < k, and yet when
we consider the submatrix Ay of the younger groups including all the reproduc-
tive ones, i.e.,

    

A

a

a

a

a a

y

k k

k k

n n

n k n k

≡





















+

+ +

−

+

0 0 0

0 0 0

0 0

0

1

1 2

1

1

,

,

,

, ,

L

L

M M O L M

L O

L L

this is indecomposable. This means that if there are at least two age groups
which are reproductive, the matrix Ay is primitive. To prove this, consider

    

A

a

a

a

a

y

k k

k k

n n

n k

0

1

1 2

1

0 0 0

0 0 0

0 0

0 0

≡





















+

+ +

−

,

,

,

,

L

L

M M O L M

L O

L L

that is, the elements   
a n j,  in Ay are set to zero for j such that   k j n+( ) ≤ ≤ −( )1 1 .

It is well known that the matrix Ay0 is indecomposable, and its power 
  
Ay

p
0 is also

indecomposable except when p is a multiple of   n k− +( )1 . Now suppose

    
a n , l > 0 with     k n< ≤l  in Ay. Then, the     n − +( )l 1 -th power of Ay,     

Ay
n − +( )l 1 , is

indecomposable because     n n k− +( ) < − +( )l 1 1 , and there is a positive entry

on the diagonal at the     l l,( )-position. Thus, by Corollary 2.3, 
    
Ay

n − +( )l 1  is primitive,

and accordingly Ay is shown to be primitive. The older age groups have no



Política y Cultura, primavera 2004, núm. 21, pp. 163-176

Indecomposability and Primitivity of Nonnegative Matrices 169

influence on the population of the younger groups. Primitivity implies strong
ergodicity, hence we have

Proposition 3.1. When Assumption 3.1 is satisfied, 
  
x t x t( ) ( )/  converges to

a unique stable distribution x*. (The symbol   x  means the absolute sum norm.)7

It is important to note that this proposition holds good even when the model
is generalized to a nonlinear case. That is, the survival ratios and reproduction
rates can depend on the distribution vector x itself. Moreover, these ratios can
change through time, thus covering the Coale-Lopez theorem.8

3.2. A Numerical Example

In this subsection, we raise a numerical example of Leslie model. Let there be
six age groups in our society, and the survival-birth ratio matrix is given as
follows:

  

A ≡

























0 0 2 0 0 0 0

0 0 0 7 0 0 0

0 0 0 0 95 0 0

0 0 0 0 0 98 0

0 0 0 0 0 0 6

0 0 1 02 1 06 0 0

.

.

.

.

.

. .

With this matrix, we have

  

A 10 12

0 0 0 05 0 09 0 05 0

0 0 0 0 22 0 46 0 15

0 0 0 22 0 23 0 30 0 40

0 0 0 43 0 66 0 24 0 19

0 0 0 20 0 62 0 66 0 15

0 0 0 25 0 57 1 01 0 66

0 0 0 03 0 03 0

≡

























≡

. . .

. . .

. . . .

. . . .

. . . .

. . . .

,

. . .

 and A

0404 0 06

0 0 0 28 0 44 0 16 0 13

0 0 0 18 0 58 0 62 0 14

0 0 0 15 0 34 0 59 0 39

0 0 0 41 0 56 0 34 0 36

0 0 0 62 1 29 0 92 0 34

.

. . . .

. . . .

. . . .

. . . .

. . . .

























7  See for similar theorems E. Seneta, Non-negative Matrices and Markov Chains, 2nd ed., Springer-
verlag, 1981. T. Fujimoto and U. Krause, “Strong Ergodicity for Strictly Increasing Nonlinear Operators”,
Linear Algebra and Its Applications, vol. 71, 1985, pp. 101-112.

8  T. Fujimoto and U. Krause, 1985, in footnote 7. See also T. Fujimoto and U. Krause, “Asymptotic
Properties for Inhomogeneous Iterations of Nonlinear Operators”, SIAM Journal on Mathematical Analysis,
vol.19, 1988, pp. 841-853, and J. H. Pollard, 1973, in footnote 6.
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In fact, among eigenvalues of A, there exists a unique positive eigenvalue, λ,
called the Frobenius root of A, with which a strictly positive eigenvector is
associated:

λ = 1.05, and its eigenvector x= (0.04  0.24  0.35  0.39  0.42  0.74)’.

Starting from an arbitrary initial vector of distribution, the relative age distribution
gets near the above eigenvector, and the rate of growth approaches to 5% be-
cause in the limit the population dynamics is described by the equation,

  c x c xt t⋅ ⋅ = ⋅ ( ) ⋅λ 1 05. , where c is a certain positive scalar.

4. CONNECTIVITY AND FRAGILITY OF SOCIAL NETWORKS9

4.1. A Long-Run Degree of Friendship Connection

We proceed to the second application of our results in Section 2. The topic is the
degrees of connection and fragility of social networks. In the standard literature
of social network analysis (SNA), a degree of connection is normally defined
using the adjacency matrix of a social network.10 Although indirect connections
or chains among members are taken into consideration in the works so far
made, the adjacency matrix or binary relationships are left static, and a measure
is constructed supposing these basic structures remain unchanged.

In reality, however, an indirect connection today often turns into a direct
one tomorrow. We may think of a network of friendship among members. Thus,
degrees proposed in the literature have to undergo quick revisions as time goes
on. Here in this section, we go to the other extreme, and define a degree of
connection as if all sorts of efforts have been done to make indirect connections
direct: a friend of my friend today is my direct friend tomorrow. This supposi-
tion is not so awkward when we consider particularly ‘affectionate’, ‘benign’, or
‘cheerful’ relationships among the members of a network. In this context, we
can also propose an ‘efficient’ way to raise the degree of connection of a net-
work, and a new concept, ‘degree of fragility’.

  9  A portion of this section comes from F. Ekuni and T. Fujimoto, “Degrees of Connection in Social
Networks: A Long-Run Analysis of Friendship”, Treatises (Shikoku-Gakuin), vol. 113, 2004, pp. 59-66.

10  J. P. Scott, Social Network Analysis: A Handbook, 2nd ed., Sage Publications, 2000 (the 1st ed. in
1991); S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Cambridge,
Cambridge University Press, 1994, and R. Hanneman, Introduction to Social Network Methods, 2001, on-
line text at http://www.analytictech.com/networks.pdf or http://faculty.ucr.edu/~hanneman/SOC157/
TEXT/Textindex.html.
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Let us consider a human network consisting of n persons. Each person may
be called a member or a node. First, we take up a normal   n n×  adjacency
matrix A, in which each entry is either unity or zero. When the (i, j) entry is
unity, member i likes member j, while in the case of zero, member i has no
particular feeling toward member j. We do not assume the reciprocity or the
reflexivity in this relationship, though it seems quite natural to observe mutual
affectionate feeling in this sort of relationship when we consider a network
consisting of self-conscious people. What we assume away is a psychological
phase of a ‘stalker’ where love and hatred are two sides of a thin paranoiac
sheaf of feeling. In other words, what we deal with is a very simple feeling of
liking or love toward another member, and an important assumption we make
is that when member i likes member j, who in turn likes member k, then after a
short while member i starts to like member k. And in this section, the intensity
of feeling is not discussed: either one likes someone else or not, one or zero
relationships. As mentioned above, reciprocity is not required. The reader can,
however, include it when it is desirable to do so.

Let us define our concept of degree of connection, given a usual adjacent
matrix, A. To make our story simple, we assume
Assumption 4.1. All the diagonal elements of A are unity.

That is, every member likes himself/herself. Note that this assumption is
mathematically an extreme opposite to the Leslie model where all the diagonal
elements can be zero. Let us define the ad-square (or adjacency square), A(2), of
matrix A. In plain words, the (i, j) element of A(2) is unity when its corresponding
element of the ordinary square A2 is positive, and otherwise 0. In a recursive
way we can define A(k), i.e., A to the ad-power of k. Formally,

  
a when a a and a when a aij

k
ih hj

k

h

n

ij
k

ih hj
k

h

n
( ) ( ) ( ), .= > = =−( )

=

−

=
∑ ∑1 0 0 01

1

1

1

Here 
  
a ij

k( )  is the (i, j) entry of A(k), and 
  
a ij

k−( )1  is the (i, j) entry of A(k – 1). Since the

number of positive entries monotonically increases with a higher ad-power by
Assumption 4.1, certainly there exists the limit

  
A A

k

k( ) ( )lim∞

→∞
= .

We propose
Definition 4.1. The F-degree(or friendship-degree) of connection of a given
  n n× adjacency matrix A is the ratio of positive entries in off-diagonal elements

of   A( )∞  against n(n –1) possible one-way relationships.
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This may seem artificial. The identity matrix, however, gives degree 0. It is
not difficult to compute F-degrees once the adjacency matrix is available. It
is well known that by a suitable renumbering of members, any nonnegative
matrix is divided into the indecomposable submatrices, each of which is aligned
along the diagonal of the original   n n×  matrix.

    

A

A

A

As

=



















1

20

0 0

0 0 0

* * *

* *

*O

Each   A ii , = 1 to s, is indecomposable, and its size is mi. The index set (members
in the subnetwork Ai) for Ai, i = 1 to s, is written as Ii, i = 1 to s.

Our Corollary 2.3 tells us that any indecomposable nonnegative matrix with
al least one positive entry on its diagonal is primitive and some power of this
matrix becomes strictly positive. Thus, in the limit, those indecomposable
submatrices are all positive while the remaining entries are filled with zero if we
in addition assume that the submatrices represented by * in the above adjacency
matrix A are all zero matrix, i.e., the friendship feeling is reciprocal. Our F-
degree of connection, F, in a social network is thus computed as

  
F

m n

n n

m

n

i

i

s

i

i

s

=







−

−( ) ≅





= =

∑ ∑2

1

2

1

21
  (when n is large.)

In general, when the submatrices represented by * include non-zero entries, the
F-degree falls in the region

  

m n

n n
F

m n

n n

i

i

s

i

i

s
2

1

2

1

1

1

2 2 1
= =
∑ ∑





−

−( ) ≤ ≤ +







−

−( )

When n is large, these bounds can be approximated as
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m

n
F

m

n

i

i

s

i

i

s
2

1

2

2

1

2

1

2 2
= =
∑ ∑





≤ ≤ +







In a completely isolated society in which the adjacency matrix is represented by
the   n n×  identity matrix, our degree gives 0, as noted above. Being different
from the degrees previously proposed, our F-degree gives 1, a perfect connection,
for the following adjacency matrix A4.

  

A4

1 1 0 1

1 1 0 0

0 0 1 1

1 0 1 1

=



















This matrix, when multiplied by itself for three times, becomes strictly positive.
Likewise, if a given adjacency matrix is given as A8 below, our F-degree is again
1 while traditional degrees may give a low magnitude because there are many
zeros in the matrix. This matrix turns to be

  

A8

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 1 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 1 0 1 1

=































strictly positive after multiplication of itself 7 times: A7 > 0. Note that this A is not
symmetric.

The reader may have observed that a perfect degree is to be obtained when
a series of direct ‘friendships’ are started among couples of members, each of
which consists of members from the subnetworks Ai and Ai + 1. (It is understood
that As + 1 stands for A1.) Thus, in order to realize perfect degree of connection in
a network, it is necessary to create only one friendship between so far isolated
subnetworks arranged in a serial way. Though our degree is special and limited,
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this efficient way to enhance mutual connection may be telling us something
useful. In terms of mathematics, the condition is

  
* , , ..., ,( ) ∀ ∈ { } ∃ > ∈ ∈ +for h s a for i I and j Iij h h1 2 0 1.

The above   8 8×  example of A8 is constructed so that it satisfies this condition.
It is not difficult to prove this by the method of ad absurdum. Suppose to

the contrary, that is, the network adjacency matrix is not primitive even if the
above condition is satisfied. Then, the matrix must be decomposable because
we have positive entries all along the diagonal. We now have two index sets I
and J such that

  
I J I J I J n and a when i I and j Jij≠ ≠ ∩ = ∪ = { } = ∈ ∈φ φ φ, ,  , , , ..., , .1 2 0

These two sets I and J cannot divide each subnetwork because each subnet-
work is known to be indecomposable. Thus, each subnetwork either belongs to
I or to J. Then, there exists at least one pair of subnetworks, Ai and Ai + 1, such
that

I I and I Ji i⊆ ⊆+1 .

This, however, contradicts the condition (*) stated above.

4.2. Fragility of Social Networks

Our fragility of social networks is the Marshallian elasticity of the F-degree of
connection with respect to the size of a network. In more detail, when the
number of members decreases by 1 percent (%), we calculate the maximum
percent decrease of our F-degree of connection, which is our definition of fragility
of social networks. When 1% means a fractional number, e.g., 9.7 persons, we
may take the arithmetic average of the two cases: the decrease of 9 and that of
10 members. On the other hand, when the withdrawal of 1 member means x%
decrease, we divide the percent decrease of F-degree by x. Thus, in the above
example of the adjacency matrix A8, the withdrawal of the first member decreases

the F-degree from 1 to 
  

18

42

3

7
= , while the membership diminishes by 1/8, making

the fragility 
  

1 3 7 100

1 8 100

32

7
4 57

−( ) ×
( ) ×

= ≅
/

/
. .
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When the adjacency matrix is the identity matrix, i.e., a completely isolated
society, the withdrawal of an arbitrary number of members, so long as it is fewer
than the total, does not affect the F-degree, and leaves it always 0. Hence, the
fragility is also 0, and this makes sense.

5. CONCLUDING REMARKS

It should be emphasized once more that the Leslie model can be generalized in
two directions: one is that both the reproduction (or birth) and the survival
ratios can depend upon the population distribution, and the other is those ratios
change with time. The former is a nonlinear generalization, and the latter
an extension to the inhomogeneous case. In more detail, to make a nonlinear

extension, one simple way is to consider the elements,   
a xij( ) , of a given matrix

are functions of the distribution itself:

    

A x

a x

a x

a x

a x

a x a x

k k

k k

n n

n k n k

( ) ≡ ( )

( )
( ) ( )


























−

+

−

+

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

1 2

1

1

1

1

,

,

,

,

, ,

( )

( )

L L

M O L M M L M

O L

L L

M M M M O M M

L L

L L





In order to make the transformation Ax ray-preserving, we assume aij(x)’s are all
homogeneous of degree 0.

The inhomogeneous case comes out when aij(x, t)’s are functions of time or
period as well as distribution. Weak ergodicity remains to be valid under some
conditions, thus starting from two different initial distributions, two dynamic
paths get nearer to each other as time goes on, though they may not converge to
a ray and continue to fluctuate or even run chaotic.

It is clear from our mathematical arguments in Section 2 that we do not need
in Section 4 the Assumption 4.1 that every member likes himself/herself. All we
need is at least one person in each indecomposable subnetwork likes himself/
herself. The center of networks can also be defined in our own way. The reader
is referred to our paper in the footnote 9.

Hatred can hardly be treated by our method. This feeling is often hidden
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and unidirectional. Hatred is not a quick transitive relationship: it is not easily
made a direct relation from member i to k when member i hates member j and
member j hates member k. Member i may even like member k because the latter
is hated by member j.
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